Ecophysiology

Please Note: Some of the slides are Animated and are best viewed as a Slide Show; some slides have attached notes below the slides and these are best viewed in Normal (editing) view.

4. Water & Plants

Rainfall Stimulates Plant Growth

FIGURE 3.1 Corn yield as a function of water availability. The data plotted here were gathered at an Iowa farm over a 4-year period. Water availability was assessed as the number of days without water stress during a 9-week growing period. (Data from *Weather and Our Food Supply* 1964.)

FIGURE 3.2 Productivity of various ecosystems as a function of annual precipitation. Productivity was estimated as net aboveground accumulation of organic matter through growth and reproduction. (After Whittaker 1970.)

2.0

Water Relations: Water Potential, Y_{H_2O}

Studying Water Relations in Plants involves:

- Assessing the *Amount* of Water in Different Locations (Soil, Xylem, Cytoplasm, etc.)
- Assessing the *Driving Force* for Water Flow between Locations (Differences in Amounts, Gravity, Pressure)
- Assessing the *Conduction* (Resistance) of Flow Pathway
- Flow (Flux) = Driving Force x Conductance
 - = Driving Force / Resistance

Water Potential, YH₂O

What Forces Make H₂O Move?

Differences in:

Concentration(Molar, Kg/m-3, ..)Pressure(Pa, Bar, N m-2<..)</td>Height (gravity)(m,..)

 ? To Determine Force for H₂O Movement Between 2 Locations, Forces have to be Summed in Each and Difference Taken.
 Total Force = (Force in Location A) – (Force in Location B)

How can the Amount of H_20 be As	Values of R	Units (V·P·T ⁻¹ ·n ⁻¹)
Concentration?	8.314472	J-K ⁻¹ -mol ⁻¹
Concentration?	0.0820574587	L-atm-K ⁻¹ -mol ⁻¹
1000a / 18a = 55.5 M or 1000 K	83. <mark>144</mark> 72	cm ³ ·bar·mol ⁻¹ ·K ⁻¹
	8.20574587 × 10 ⁻⁵	m ³ ·atm·K ⁻¹ ·mol ⁻¹
Pressure?	8.314472	cm ³ MPe-K ⁻¹ -mol ⁻¹
$P = (n \wedge l) RT$ $(n \wedge l = m \circ l / l itre T$	8.314472	L·kPa·K ⁻¹ ·mol ⁻¹
$i = (100) \times 100 \times 1000 \times 10000 \times 100000 \times 100000000$	8.314472	m ³ ·Pa·K ⁻¹ ·mol ⁻¹
In K; R, Gas Constant =	62.56567	L-mmHg IC ¹ -mol ⁻¹
	62.36367	L-Torr-K ⁻¹ -mol ⁻¹
8.314 L-KPa K ⁻	83.19472 [,]	L-mbar-K ⁻¹ -mol ⁻¹
or 0.008314 L-MPa K ⁻¹	0 19 0 4 2 172	L·bar·K ⁻¹ ·mol ⁻¹
	1.987	cal·K ⁻¹ ·mol ⁻¹
	6.132440	lbf-ft-K ⁻¹ -g-mol ⁻¹
For	10.73159	ft ³ ·psi· °R ⁻¹ ·lb-mol ⁻¹
	0.7302413	ft ³ ·atm·°R ⁻¹ ·lb-mol ⁻¹
Pure H_2O , n/V = 0 so $Y_{H_2O} = 0 \times 0.0083 \times 298 = 0$ MPa	998.9701	ft ³ ·mmHg·K ⁻¹ ·lb-mol ⁻¹
1 M Glucose $p(1) = 1 \text{ V}_{10} = 1 \text{ v} = 0.0083 \text{ v} = 2.08 \text{ m}^2$	8.314472 × 10 ⁷	erg-K ⁻¹ ·mol ⁻¹
1 IV Old O	a	
$1M \text{ NaCl, n/V} = 2, Y_{H_2O} = -4.90 \text{ MPa}$	a	

Water Potential, Y_{H2}O

The Pressure Term is Expressed in Pascals (Pa) = Force / Area = Newtons / Area

 $(1 N = 1Kg m s^{-2})$

How can the Gravitational Force on H_20 be Assessed? Force = $r_w ghr_w$, density = 1000Kg m⁻³ g, Gravitational Constant = 9.806 m s⁻² h, Difference in height between Locations (m)

> So, 10m height difference = 98,060 Kg m⁻¹ s⁻² Expressed on a m⁻² basis ⇒ Force . m⁻² = 98,060 Kg m² s⁻² Pressure (Pa) = 98,060 N m⁻² or ~<u>0.1 MPa</u>

The Total Force is Sum of Forces for All Terms = Amount + Pressure + Gravity

And Called the 'Chemical Potential of Water' Or the Water Potential, Y_{H20}

 $\begin{array}{ll} Y_{H_2O} = Y_s & + Y_P + Y_g \ , \ often \ the \ Y_g \ term \ can \ is \ small \\ Y_{H_2O} = Y_s & + Y_P \ or \\ Y_{H_2O} = p & + P \end{array}$

Hofler Diagrams

Hofler Diagrams are a useful way of viewing the water relations of plant cells.

Be careful!

Solute Potential Ys

Osmotic Potential +p

Osmotic Pressure –p

Ys

р

-р

Solution of 1M sucrose has the following values:

Water Has Special Properties

Water Can 'Hydrogen Bond' With Other Water Molecules With Other Small Molecules With Surfaces

Hydrogen bonding between H₂O

⇒ High Specific Heat (75.6 J mol⁻¹ ° K⁻¹)

⇒ High Latent Heat of Vaporization (44 KJ mol⁻¹)

⇒ Surface Tension / Tensile Strength

Hydrogen Bonding Small Molecules

⇒Water is an Excellent Solvent for Polar Compounds

Hydrogen Bonding With Surfaces

⇒ Capillary Action

Water Movement

Water Can Move Between Two Locations If There Is:

Concentration Gradient (By Diffusion)

 $J_{H_2O} = -D_{H_2O} (DC_{H_2O}/Dx)$ - Fick's Law

(J_{H_20} , water Flux; D_{H_20} , Diffusion Coefficient – 2.272 10⁻⁹ m² s⁻¹; C_{H_20} , Concentration; x, distance between locations)

Pressure Gradient (By Pressure-driven Flow)

Poiseuille's Equation..

$$J_{H_2O} = \left(\frac{\pi r^4}{8\eta}\right) \left(\frac{\Delta \psi_p}{\Delta x}\right) \qquad \qquad J_{H_2O} = \left(\frac{\Delta \psi_p}{8\eta} \left[\frac{\Delta x}{\pi r^4}\right]\right)$$

Height Gradient (By Gravitational 'Pull')

$$J_{\text{H}_{2}\text{O}} = r_w gh$$

Hydraulic Conductivity

A Water Potential Gradient ($DY_{H_{20}}$)Will Not Necessarily Result in Water Flow – a Conduction Pathway is Required (Resistance)

Typical Pore-Size & Soil Water Contents of Different Soils

	Soil Type		
Parameter	Sand	Loam	Clay
Pore Space (% of Total)			
> 30 mm particles	75	18	6
0.2-30 mm	22	48	40
< 0.2 mm	3	34	53
Water Content (% of Volume)			
Field Capacity	10	20	40
Permanent Wilting Point	5	10	20

The Matric Potential, YH₂O

As Y_{H20} Falls a 'New' Force Increases, Ym, the Matric Potential

 $Y_{H_{2}O} = Y_{S} + Y_{P} + Y_{m}$

Ym arises when the film of water on soil particles are only a few layers thick. The fixed electrical charges on the soil particles form strong H-bonds with the water's dipoles binding the water tightly. The Ym term is used for convenience. In fact it is not a 'New' Force, but appears to be so. Ym can be accounted for by the Ys and YP terms, but not easily – for this reason it is considered as a separate term.

Water Extraction From the Soil

Root Statistics...

- A single grass plant in 1 litre of soil:
- Length of roots = 12 km
- Surface area $= 5 \text{ m}^{-2}$
- Length of roots + root hairs
- Surface area
- Degree of soil contact
- Maximum distance for H₂Oto move to a root

- = 220 km
 - $= 14 \text{ m}^{-2}$
 - = 1%

= 10 mm

Root Morphology Affects Water Uptake

Taproots can extract water from deep water tables

Cowpea or Blackeye Bean (*Vigna unguliculata*) ...but the Major Crops Don't Do This...

Extensive root hair systems greatly increases the absorptive properties of roots –

Some plants produce root hairs when drought stressed

What determines root development?

Root Hairs

Hydraulic Conductivity In The Xylem Varies Between Species

 $K_{L} = Leaf Specific$ Conductivity $K_{S} = Specific Hydraulic$ Conductivity

Capillary Action

- To calculate the height liquid can be raised by capillarity:
- $h = 2T\cos \phi \div dgr$
- h = height of capillary (meters)
- T = surface tension (@20C,
- T for water = 0.0728Nm⁻¹)
- cos ø = lifting component of meniscus angle (approx = 1)
- d = density of liquid (998kgm⁻³)
- $g = gravitational constant (9.80 ms^{-2})$
- r = radius of capillary (in meters)

Capillary Action

Capillary diam (µ m)	height of water column (m		
0.005	3000		
1	15.3		
10	1.53		
40	0.38		

Point: Height to which a column of water can be lifted by a capillary is inversely related to the diameter of the capillary.

Xylem Vessels: Ultrastructure

Pressure Required to Move Water Up a Tree

Pressure gradient = 0.02 MPa m⁻¹

- Tree height = 100 meters (a Redwood tree)
- Total Pressure Needed = 2.0 MPa
- Weight of Water ... added Force to overcome – 100 meters X 0.01MPa m⁻¹ = 1MPa
- Total Pressure Needed = <u>3MPa</u>

The Soil-Plant-Air Continuum

The presence of a continuous liquid water continuum from the soil to the atmosphere is required for transpiration.

PLANT PHYSIOLOGY, Third Editor, Figure 4.16 (Part 1) © 2002 Sinauer Associates, Inc.

Typical YH₂O Values in S-P-A Continuum

Typical Y _{H2O}		Water	r potentia	l and its c	ompone	nts (in MPa)
Values Along a		Water		Osmotic		Water potential in gas phase
Transpiration	Location	potential (Ψ_w)	Pressure (Ψ _p)	potential (Ψ_s)	Gravity (Ψ _g)	$\left(\frac{RT}{V_{w}}\ln\left[RH\right]\right)$
Path:	Outside air (relative humidity - 50%)	-95.2				-95.2
Note the very low value	Leaf internal air space	-0.8				-0.8
in an.	Cell wall of mesophyll (at 10 m)	-0.8	-0.7	-0.2	0.1	
Note: It is the Water Vapour Presuure Deficit	Vacuole of mesophyll (at 10 m)	-0.8	0.2	-1.1	0.1	
(VPD) that Determines Transpiration Rates (see	Leaf xylem (at 10 m)	-0.8	-0.8	-0.1	0.1	
explanation in notes below).	Root xylem (near surface)	-0.6	-0.5	-0.1	0.0	
,	Root cell vacuole (near surface)	-0.6	0.5	-1.1	0.0	
	Soil adjacent to root	-0.5	-0.4	-0.1	0.0	
	Soil 10 mm from root	-0.3	-0.2	-0.1	0.0	

PLANT PHYSIOLOGY, Thed Edition, Figure 4.18 (Part 2) © 2002 Sinauer Associates, Inc.

Relationship Between RH & YH₂O

$$RH\% = \frac{c_{wv}}{c_{wv(sat)}}.100$$

RH = Relative Humidity (%) Cwv = water concentration (moles m⁻³) Cwv(sat) = saturation water concentration (moles m⁻³)

Relationship Between RH & YH₂O

$$\psi_{H_2O} = \frac{RT}{V_w} \ln(RH)$$

 Ψ w = water potential (kPa)

- R = gas constant
- = 8.314 kPa L mol⁻¹ K⁻¹
- T = temperature (°K)
- Vw = partial molal volume of water
- = 0.018 Liters / mol
- RH = relative humidity (0 1.0)
- Note: MPa = kPa/1000

TABLE 4.2

Representative values for relative humidity, absolute water vapor concentration, and water potential for four points in the pathway of water loss from a leaf

	Relative humidity	Water vapor		
Location		Concentration (mol m ⁻³)	Potential (MPa) ^a	
Inner air spaces (25°C)	0.99	1.27	-1.38	
Just inside stomatal pore (25°C)	0.95	1.21	-7.04	
Just outside stomatal pore (25°C)	0.47	0.60	-103.7	
Bulk air (20°C)	0.50	0.50	-93.6	

Source: Adapted from Nobel 1999.

Note: See Figure 4.10.

"Calculated using Equation 4.5.2 in Web Topic 4.5; with values for RT/V of 135 MPa at 20°C and 137.3 MPa at 25°C.

Diurnal Course of RH Over Crop Canopy

Stomatal Aperture And Boundary Layer Resistance At Leaf Surface

Role of Water Evaporation in Moving Water Up a Plant

Location	Relative humidity	Potentia (MPa) ^e	
Inner air spaces (25°C)	0.99	-1.38	
Just inside stomatal pore (25°C)	0.95	-7.04	
Just outside stomatal pore (25°C)	0.47	-103.7	
Bulk air (20°C)	0.50	-93.6	

FIGURE 4.11 Concentration of water vapor in saturated air as a function of air temperature.

Measuring Water Potential in Plants with a Pressure Chamber

Transpirational Water Losses

Plant Water Transpired (L) in Season Potato 100 Winter wheat 100 Tomato 136 Corn 216 Silver Maple Tree 232 hr⁻¹ per kg corn grain 632 per kg corn plant 240

The Efficiency of Water Use Differs

Measuring Y_{H_2O}

1. Scholander's Pressure Chamber (Bomb)

Measuring $Y_{\rm H_2O}$

2. Psychrometer

Works by allowing tissue to come to equilibrium with a *SMALL* volume of air in a sealed chamber. Inside the chamber is a Thermocouple (temperature sensor) wetted with a drop of solution of known Y_{H_2O} .

Turgor Pressure, Y_P, Can be Measured Directly with a Pressure Probe.

Many Abiotic Stress Factors Cause Water Stress

$$Y_w = Y_s + Y_p$$

- Unless very low, low Y_w per se does not seriously affect plants
- But the loss of Y_p does! Y_p is required for:-
 - cell expansion (growth)
 - support in herbaceous plants

Plants Synthesize Compatible Solutes in Response to Water Stress

HO-C-H

н—с—он

н-с-он

Mannitol

CH2OH

HÓ

ÓН

Pinitol

- Compatible solutes include:
 - Proline
 - Tertiary Sulfonium
 Compounds (TSCs)
 - Quaternary Ammonium Compounds (QACs)
 - Polyhydric alcohols

Compatible Solutes Accumulate in the Cytoplasm

Salt-stressed spinach leaf cell

Field Capacity is the amount of water the soil can hold after drainage of excess water Permanent Wilting Point varies for different plants -Y_w beyond which turgor can not be

regained,

Distribution of Desiccation Tolerance in the Plant Kingdom

Bryophyte Model

Rehydrated

Angiosperm Model

Hydrated

SLOW WATER LOSS Induction of Cellular Protection

Dry

Rehydrated

Orthodox Seeds all angiosperm embryos can withstand desiccation!

Figure 10.2. Schematic representation of daily changes in the water potential in the soil, root and leaf of a plant in an initially wet soil that dries out over a one week period. Shown are curves for the soil water potential, root xylem water potential and leaf (mesophyll) water potential, as adapted by Noble (1983; his figure 9.13) freely adapted from an article by Slatyer (1967, p 276).

Low Leaf Y_{H2O} can Lead to 'Mid-Day' Closure of Stomata

- 1. no water limitation, stomates open
- 2. some water limitation midday stomatal regulation
- 3. severe water limitation midday stomatal closure
- 4. soil dry, complete stomatal closure

Water Use in Plants: most is used in transpiration.

- Photosynthesis
 0.1 litres
- Growth

(new leaves, roots etc)

Transpiration

1.9 litres
 98 litres

Some Drought Tolerant Plants...How do they Survive?

Velloziaceae Xerophyta villosa

Hamamelidae Myrothamnus flabellifolia

Desiccation-tolerant Lilies

Laraea tridentata Cresote Bush

Scrophulariaceae Craterostigma plantagineum (Resurrection Plant)

Hydrated

Dry

5 hours

Rehydrated

Desiccation-tolerant Poaceae

Xerophyta viscosa

Sporobolus stapfianus